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ABSTRACT 

In this work, we developed an one-
dimensional inverse algorithm to interpret 
electromagnetic induction geophysical well log 
data. This is based on the dumped least square 
technique, and its goal was to perform the 
characterization of a turbidite geological system. 
This inversion scheme was used to interpret 
apparent resistivity data obtained in a borehole 
drilled in a turbidity outcrop of Almada Basin, 
South Bahia State/Brazil. On the other hand, the 
forward problem consists in the exact 
mathematical solution of the response of a 
stratified media crossed by a borehole. To 
validate our interpretation, geologists described 
the lithology from samples and also using gamma 
ray log. With the developed algorithm, it was 
possible to describe the resistivity and thickness 
of the main layers along the well, besides the bias 
between final model and experimental data and 
the fitting error. Although we know that one-
dimensional inversion is very unstable, it has 
some advantages, as a rapidly convergence when 
initial model is close the correct model.  

 
NOMENCLATURE 
 
A = The matritial element 
AT  = A transpost matrix 
am,bm  = constants  
E  = Electromagnetic field 
F  = Vetor potencial 
ÄG  = Difference between the apparent 
resistivity and that calculated by the inicial model 
I  = Identity matrix 
Jo(ër)  = Bessel function, first kind,  Zero order. 
k   = Constant 
m   = Magnetic moment 
∆P =Difference between the unknown 
parameters and the of the inicial guess. 
 

 
Pj

0  = Vetor of parameters of the inicial 
model 
ξ = error 
ì = Magnetic permeability 
ω = 2ðf  = Radian Frequency 

 
INTRODUCTION 

In this paper, an one-dimensional (1D) inverse 
methodology was used to interpret induction well 
log data  (ILD - Induction Logging Depth).  This 
method has been used to study responses from 
layered models using electro-resistivity, induction 
polarization and magnetotelluric geophysical 
methods (Wu, 1986).  The inverse algorithm is 
based on the dumped least square technique 
(ridge regression) and it  was proposed by 
Marquardt in 1970.  Thus,  our main objetive was 
to obtain the resistivity characterization of a 
turbidite outcrop system of the Almada Basin, 
located at the South Bahia State.  The well log 
(SA-01) used in the interpretation, cross the 
Urucutuca Formation and it is located in the 
border Ilheus -  Urucutuca road, at the 
Sambaituba district.  Geophysically, the outcrop 
presents a representative thin layered beds of 
turbidities, as can be observed using well logging 
(Tomaso, 2003). 

Many advantages are considered when we use 
this inversion method, among them we consider a 
convergence of inaccurated inicial models, 
stability with having geological noise and rapid 
obtaining of statistical data (Pelton et al., 1978). 
Each regression process needs many forward 
estimations, and during this process is important 
the reduction in time at a reasonably cust.  This 
was done in a former work of Carrasco & 
Carrasquilla (2003). Like the most of  the 
geophysical methods, there is no guarantee in the 
inversion unicity, but this not occurs when the 
inicial parameters are close to true values.  So, 
another aim of this work is to estimate the unicity 
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level of the geological models, and the estimation 
of the error degree. 
 
GEOLOGICAL CONTEXT 

The Brazilian Continental Almada Basin is 
located at the South of the Bahia State, between 
14º 15’ and 14º 55’ S coordinates.  At North is 
limited by the Itacare High, away from the 
Camanu Basin, and at the South is limited by the  
Olivença High, away from the Jequitinhonha 
Basin.  This includes a small emerging portion 
with 200 km2  of area and sediments with 1.800 m 
of thickness (Figure 1).  The continental platform 
area is about of 1.300 km2 and 6.000 m of 
sediment column (Bruhn & Moraes, 1989). 

The Almada Basin outcrops arise as a semi-
exhumed canyon fixed in the basament.  They 
were studied by Bruhn & Moraes (1989) and 
Mendes (1998), and are the few outcrop examples 
of turbidities coming the transgressive marine 
megasequence of the brasilian border.  

These turbidities have the same age of the 
main brasilian oil reservois, present in the 
Campos,  Espirito  Santo  and   Sergipe – Alagoas 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Basin.  So, it is an important issue to make the 
characterization of this geological formation. 

The well log studied was taken from the AS-
01 well, it has 255 m of depth and 8.5 inches of 
diameter, and it is located in the following 
coordinates: 14º 39’ 31’’ S and 39º 06’ 05’’ W.  
These turbidities are constituited by sand-
conglomeratic formations and shale of  the 
campanian/maestrichtianan period, defining 
lithoestratifically the Urucutuca Formation.  In 
this outcrops were identified sand deposits with 
the following geological structures: wavy, linsen, 
ripples and mud coupplets.  There is also 
Ophiomorfa  bioturbations and onlap filled by 
insertions (D`Avila, 2003). 
 
METHODOLOGY 
Well Logging 

Well logging technique has a important role 
in oil exploration, mainly in getting the 
petrophysics characteristics of reservoirs, because 
it is a method that represents a little  percent of 
the well cost, but gives important petrophysical 
information of the rock. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Figure 1. Studied area. Geology is shown at the left. Modified from Bruhn e Moraes (1989). 
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In the Almada Basin, the fact of having 
turbidity outcrops does not take importance to the 
well logging method, because in the well 
conditions the ‘in situ’ rocks do not have 
modification in the physical and geological 
propierties of the formation. 

In our study we use the ‘Induction Logging 
Depth’ (ILD) at the well SA-01, which measures 
the electric conductivity of the geologic 
formations. The main problem in these logs is 
related to the diameter of the well, type of mud, 
giving some errors in the well data (Nery et. al., 
1997).  These effects were not considered in this 
work. 

 
The Forward Method 

The development of the 1D forward 
algorithm is based on the exact solution of the 
Green function in order to determinate the 
electromagnetic field in a stratified medium, 
crossed by a well tool. 

In induction logging the magnetic dipole 
source is aligned with the borehole axis.  For this 
problem we choose a cylindrical coordinated 
system.  For this case, the vector potential of the 
magnetic type satisfies the Helmholtz equation: 

022 =+∇ zz FkF ,    (1) 

and the electromagnetic field is given by: 
FE ×−∇= .        (2) 

Also, the electric components are Er=0, Ez=0, and 

r
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iE Z

∂
∂

= ωµφ
.         (3) 

Near the source Fz tends to a vector potential of 
the magnetic dipole: 
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Finally, solving these sets of equations we have in 
a general form: 

∫
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The constants of this expression changes 
according the position of the receiver and 
transmitter with the layer positions. 

To test the forward responses of the program, 
we considered a 27 layered model known as 
Oklahoma Formation (United States), which is 
used as benchmark in the well logging. 

The Figure 2 shows the apparent resistivities 
measured by ILD, 2C40 and 6FF40 tools,  all of 
them belong to the SCHLUMBERGER company 
(Carrasco & Carrasquilla, 2003). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
INVERSE PROBLEM 

Using a development expansion of the Taylor 
series, in a non linear equation of this kind: 

∆G = A∆P,   (6) 
can be linearized as: 
∆Gi = G(P,Xi) - G(P0,Xi), i = 1, N ;   

0

),(
][

pp
XXj

ij
IP

XPG
A

=
=∂

∂= ;   ∆Pj = Pj - Pj
0 . 

The term ∆G represents the difference 
between the apparent resistivity measured by the 
log and the resistivity calculated by the inicial 
model P0.  The matritial element Aij is the partial 
derivation of Equation (6) with respect to the j–th 
parameter of the model at P0 in the i – th spacing 
between layers.  The ∆P vector is the difference 
between the unknown parameters and the of the 
inicial guess. 

So, the inversion method consists in finding 
the unknown parameters vector which gives a 
minimun ∆G.  Equation (6) was established to be 
a linear system and the solution is obtained after 
an iteration process, using the least squares  
estimator. 

This solution depends on the initial guess 
model.  So, it is important to use geological 
information in the beginning of the inversion 
process, in order to have a consistent initial model 
(Inman et al., 1973). 

 
 
 

 

Figure 2. Results from the 1D Oklahoma 
model. 
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Least Square Method 
Any mathematical function can be linearized 

as described in the Equation (7), but there is 
always an error ξ in this process in the form of:  

∆G = A ∆P + ξ,   (7) 
where A is a matrix which relates the variations in 
the vector of parameters ∆P with the variations in 
the ∆G data.  When ξ fits a minimun value, we 
can obtain ∆P using the least square method: 

∆P = (ATA)-1 AT ∆G.       (8) 
In this expression we multiply the inversion 
operator in both sides of the Equation (6) by the 
generalized inverse, (Pelton et al., 1978):   

 H = (ATA)-1 AT.      (9)  

When it exists more information than parameters 
a matrix A is called over-determinated and it can 
not be inverted radiply.  By this reason, we 
multiply both sides of the equation by  A(AT), 
which ‘T’ represents the transpose. So we have: 

AT∆G = ATA ∆P .    (10) 
If the problem were ‘well possed’ and the 

initial guess model closed  the solution, we can 
invert ATA to obtain ∆P. 

But it is difficult to have good inicial guess 
model and include poor parameters.  As a result,  
ATA is nearly singular and using a Equation (8), 
we can obtain a increasing in the residuals ∆GT 
∆G (Inman, 1975). 

When the initial guess model is selected, the 
objetive of the inversion process is to obtain a 
minimum in the error between the solution model 
and the data observed: 

  ξ = ∆GT ∆G .  (11) 
If the problem is linear, the procedure only 

would need a direct process to get a solution and 
any iteration would be necessary, but we must 
consider that the most of the geophysical 
problems are no linear (Petrick et al., 1977). 

 
Dumped Least Square   

In order to have an stable estimator and avoid 
divergence, Levenberg, Foster and Marquardt 
(Inman, 1975) proposed an adition of a small 
constant ‘k’ to ATA before the inversion process, 
so the Equation (8) turns to: 

∆P* = (ATA + k I)-1 AT ∆G,   (12) 
in which I is the identity matrix.  In a linear 
problem, the optimum value of  the constant ‘k’ is 
that which gives the minimum mean-square error. 

To high values of ‘k’, the Equation (12) 
resembles with the gradient method, which is 
stable but the convergence is slow.  As ‘k’ 
approaches zero, Equation (12) is equivalent to 

Newton-Raphson technique, which converges 
rapidly but easily diverge.  It is recomendable 
testing some values of ‘k’ in order to minimize 
the least square dumped residuals.  This technique 
is known as ‘ridge regression’ (Pelton et al., 
1978). 

The constant ‘k’ dumps small eigenvalues of  
ATA that might cause instability.  At the same 
time it has a little effect in high eigenvalues 
related to well possed parameters.  In this form, 
any small value will be increased  by ‘k’ and the 
matrix inversion (ATA + k I) will be more stable.  
Good results have been obtained using 
Marquardt’s technique with a large value of ‘k’ 
(on the order of 1.0) when the initial guess is far 
from the solution (gradient method).  A smaller 
value for ‘k’ (on the order of 0.01 or less), which 
is equivalent to including the smaller eigenvalues 
in the estimator, is  used near the solution (Newton 
–Raphson technique).  Each eigenvalue is a linear 
combination of the model parameter (resistivities 
and thicknees) (Inman et al., 1973).  
  
RESULTS AND INTERPRETATION 

The Figure 3 shows the ILD well logging 
data of the well SA-01, the initial guess model 
and the lithologic column obtained from the 
wellbore core.  To get a better result and avoid 
divergence during the inversion process, the log 
was divided in four sections (A, B, C and D), in 
order to discriminate individual sand and 
conglomerate layers, showing higher resistivities.  
The well logged is lithologically characterized by 
thick layers of shale beds reaching 50 m at 60-100 
m depth, and having a resistivity in the order of 6 
ohm-m, with thin intercalation of sand and 
conglomerates.  The configuration of the initial 
guess model is also shown in the Figure 3, and it 
was made using gamma ray and induction logs, 
and wellbore core information.  This makes 
possible a better characterization of the thickness 
in the initial model.  Resistivity values were taken 
considering an average value in each zone 
(Tomaso, 2003).  

Section A is shown in the Figure 4, at a depht 
of 200 – 250 m.  In this section we show the 
induction log, the model resulting from the 
inversion (straight lines) and the theorical values 
of the model.  We observe also low resolution in 
the thinnest beds, at a approximation depth of 230 
m.  At a depth of 215 m we can find higher 
resistivities values coming from well compacted 
conglomeratic layers on the order of 1 m in 
thickness.   
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At a depth of  230 – 235 m the high 

resistivity values are caused by the intercalations 
of conglomerate and sand layers.  The error 
between the experimental data and theory model 
was 23%, which represents a reasonable good 
fitting.  On the other hand, Table 1 shows the 
inversion results of the section A including the 
resistivities and thickness values, both of the 
initial and final model.  An important issue shown 
in this table is that the error is low when 
considering thickness values, because of the 
acceptable values coming from the geologic 
interpretation.  

In the Figure 5 we have the Section B that 
corresponds to a depth of 140-200 m.  This 
section shows low resolution in the thinnest 
layers.  This effect is because of the high contrast 
in resistivity involving adjacent layers at a depth 
of 155 – 165 m, and this corresponds to 
milimetrics and centimetrics levels of sand, shale 
and conglomeratic intercalations, which is 
adjacent to a sand bed at 168 m. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          
 
 
 

 
Figure 3. Geologic track, Well Logging data and  

Initial Model – Bahia (Tomaso, 2003). 

 
Figure 4. Inversion of the Induction well log at a 

depth of 200-250 meters (Section A). 

Layers Initial 
Model 

Final 
Model 

Difference 

1 5.00 4.97 -0.01 
2 40.00 93.10 0.57 
3 10.00 9.2 -0.09 
4 16.00 33.20 0.52 
5 6.00 6.10 0.02 
6 12.00 15.10 0.21 
7 18.00 20.10 0.10 
8 50.00 75.30 0.34 

R
es

is
tiv

iti
es

 

9 6.00 6.25 0.04 
1 13.00 13.41 0.03 
2 2.00 2.40 0.17 
3 2.00 1.52 -0.32 
4 2.00 1.92 -0.04 
5 7.00 7.36 0.05 
6 2.00 1.89 -0.06 
7 2.00 2.2 0.09 
8 2.00 2.20 0.09 

T
hi

ck
ne

ss
 

9 21.00 20.30 -0.03 

Table 1. Interpretation of Section A . 
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At a depth of 175 – 185 m we observe the 
highest resistivities values.  This might be caused 
by the existence of a thick layer of conglomeratic 
rocks with pebbles and grains of quartzo, 
quartzite and gnaiss. The error fitting between the 
experimental data and the theory model was 16%, 
and it represents good fitting.  The Table 2 shows 
a resume of the inversion process in Section B, 
with the values of resistivities and thickness of the 
initial guess and final model.  In this case, the 
validity of the information from Section A 
remains the same about the thickness.   

 
Section C (Figure 6) corresponds at a depth 

of 100 – 140 meters.  In this figure we can detect 
also, as the former case, a good fitting between 
the original well data and the theory data.  Also 
there is a high contrast in the layer resistivities, 
because of the sand-shale intercalations.  The 
error between these groups of data is 5%, what 
represents an excellent fitting, although it exists 
the possibility  of  being  modeling  some  noisy 
data.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

 
 
 
This fact is explained because this section has an 
error less than 10%, the common error of 
experimental data.  Error data can come from 
different sources, like instrument precision, lateral 
effects coming from the heterogeneous parts, 
telluric noise, etc. Table 3 shows a resume of 
Section C with the resistivities and thickness 
values from the initial and final model.  We also 
can observe here the same kind of information 
about the thickness of Sections A and B. 
 

 
 
 
 

Layers Initial 
Model 

Final 
Model 

Difference 

1 5.00 5.05 0.01 
2 10.00 9.65 -0.04 
3 10.00 15.10 0.34 
4 6.00 5.19 -0.16 
5 11.00 16.04 0.31 
6 9.00 8.67 -0.04 
7 18.00 25.23 0.29 
8 52.00 95.90 0.46 
9 34.00 30.20 -0.13 
10 38.00 40.20 0.05 
11 53.00 98.10 0.46 
12 7.00 6.20 -0.13 
13 9.00 12.30 0.27 
14 7.00 6.91 -0.01 

R
es

is
tiv

iti
es

 
15 5.00 4.97 -0.01 
1 14.00 14.20 0.01 
2 9.00 9,17 0.02 
3 4.00 4.40 0.09 
4 3.00 3.35 0.10 
5 2.00 2.43 0.18 
6 1.00 1.36 0.26 
7 2.00 1.89 -0.06 
8 1.00 1.26 0.21 
9 1.00 0.83 -0.20 
10 1.50 1.39 -0.08 
11 3.00 3.19 0.06 
12 2.00 1.89 -0.06 
13 1.50 1.44 -0.04 
14 3.00 2.96 -0.01 

T
hi

ck
ne

ss
 

15 13.00 11.73 -0.11 

Table 2.  Interpretation of Section B. 

 
Figure 5. Inversion of the Induction well log at a 

depth of 140-200 metros (Section B). 
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Finally, in Section D, we consider the well 

log data from 10 to 100 meters (Figure 7).  Again,  
here we can observe a good fitting between 
theorical and real data in the conglomeratic 
layers.  This section is geologically characterized 
by 3 levels of conglomerates with gray silt-sand 

matrix and pelagic deposits, with subordinate 
intercalations of large sands.  The error between 
experimental and theoric data was 28%, and this 
value represents a fairly good fitting.  Table 4 
shows the results of the Section D inversion and 
the resistivity and thickness values for this case. 
Here again we can find a better definition in 
thickness, as have been seen in sections A, B and 
C. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
The final log composition including all the 

former sections is shown in the Figure 8.  Here 
we have the induction log, the initial model, the 
final inversion model and the geologic track. 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Inversion of the induction well log at a 

depth of 100-140 m (Section C). 

 
Figure 7.  Inversion of the induction well log at a 

depth of 0-100 m (Section D). 

 

Layers Initial 
Model 

Final 
Model 

Difference 

1 6.00 5.60 -0.07 
2 30.00 40.49 0.26 
3 7.00 5.20 -0.35 
4 17.00 22.10 0.23 
5 5.00 5.20 0.04 
6 9.00 12.40 0.27 R

es
is

tiv
iti

es
 

7 6.00 5.05 -0.19 
1 14.00 14.08 0.01 
2 3.00 3.42 0.12 
3 5.00 4.30 -0.16 
4 4.00 4.20 0.05 
5 6.00 6.46 0.07 
 6 1.50 2.00 0.25 

T
hi

ck
ne

ss
 

7 16.00 16.46 0.03 

Table 3. Interpretation of Section C. 

Layers Initial 
Model 

Final 
Model 

Difference 

1 7.00 5.71 -0.23 
2 7.00 7.85 0.11 
3 25.00 80.20 0.69 
4 11.00 11.86 0.07 
5 18.00 35.00 0.49 
6 7.00 7.78 0.10 
7 14.00 35.10 0.60 

R
es

is
tiv

iti
es

 

8 6.00 6.50 0.08 
1 22.00 22.17 0.01 
2 9.00 8.89 0.01 
3 2.00 1.90 -0.05 
4 2.00 2.04 0.02 
5 2.00 1.97 -0.02 
6 3.00 3.42 0.12 
7 2.00 2.27 0.12 

T
hi

ck
ne

ss
 

8 61.00 61.33 0.01 

Table 4. Interpretation of Section D. 
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       Figura 8. Resistivity data, Initial Model, 
                 Final model  and  Geologic track 
 
 
 
 
CONCLUSIONS 

In the oil industry, the information coming 
from well logging data gives an adequate amount 
of information about petrophysical parameters.    
Consequently, electromagnetic induction well log 
is an important  tool to obtain electrical resistivity 
values, and this knowledge helps to find reservoir 
and seal rocks.  In our study, this information 
helps to avoid divergence in the inversion 
process, as a result of the large quantity of data 
and curve inflections coming from the real well 
log data.  In same way, we also use  gama ray 
information and wellbore cores.  On the other 
hand, when resistivity information is considered, 
we use average values for each layer. 

Final composition, including all sections, is 
shown in Figure 8.  Here we have also the 
resistivity and thickness from the inicial model 
and the final model.  This figure shows that 
resistivity values were more affected by the 
inversion process.  Finally we can say that the 
inversion methology used in this work is 
satisfactory enough, as an auxiliar method in the 
geophysical characterization of induction well 
logging, mainly in the estimation of the resistivity 
values of each layer.   

This statement is because of the good fitting 
between the theorical inversion results  and the 
experimental well log data.  
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